secOb

Seeops for GenAl:

Next-Gen
Security Insights

Beyond Logs & M

$whoami

Shubhendu
Shubham

“sudo rm -rf / problems”

aka “Troubleshooter”

Y

e
CAPIAINS

Open Source/
Adv Rider

MDC

Cloud Security,

7 Microsoft Defender for DevSecOps
/ Azure Landing Zone
CloudsStrike
) HACKTHEBOX

Docker

/
| Container__ Docker Scout
Kubernetes
GHAS
Subject

SASTISCA //— Synk
Matter
Expert

Qualys
Tennable

DAST
Burpsuite

____STRIDE

Threat ing _—
= — PASTA

Microsoft Sentinel
soc
Wazuh(single Node)
NIST CSF 2.0
__Zero Trust Architecture
Framework __ _~ Microsoft Cloud Adoption Framework
- MITRE Attack & Defend(intial Draft)

Shubhendu's Skills

Cyber Kill Chain

OWASP Top 10
= SANS Top 25

Standards
R Defence in Depth
Strategies o
— Security in Depth
Ruby
GoLang(Learning)
Shell Scripting(Bash) & Adv Linux

CTF BADGES

KQL
YARA & Sigma
YAML
Markdown
Git & GitHub

Languages/Others

Microsoft

CTF
Microsoft
AAZURE SECURITY
AZURE NETWORK
ENGINEER ASSOCIATE
ASSOCIATE * ok

ATTACKIQ
AZ 500

AZ 700

Community

The Path to a Secure Future™

fy Azure Developer 22
00 (Communily @ docker. KALI|

Disclaimer

You can’t protect

what you don’t know you have:

— not sure

OWASP Top 10 for LLM Applications 2025

OWASP Top 10 for LLM Application 2025

LLMO1:

Prompt Injection

LLMO2:

Sensitive Information Disclosure

LLMOS:

Supply Chain

LLMO4:

Data and Model Poisoning

LLMOS:

Improper Output Handling

LLMOG6:

Excessive Agency

LLMO7:

System Prompt Leakage

LLMOS:

Vector and Embedding Weaknesses

LLMO9:

Misinformation

LLM10:

Unbounded Consumption

Attack Scenario

An attacker injects a prompt into a customer support chatbot

Instructs it to ignore previous guidelines
Scenario #1: Direct Injection Queries private data stores

Sends emails
Leads to unauthorized access and privilege escalation

A user employs an LLM to summarize a webpage with hidden instructions
Scenario #2: Indirect Injection Causes the LLM to insert an image linking to a URL

Leads to exfiltration of the private conversation

A company includes an instruction in a job description to identify Al-generated applications
Scenario #3: Unintentional Injection An applicant uses an LLM to optimize their resume

Inadvertently triggers the Al detection

An attacker modifies a document in a repository used by a RAG application
User's query returns the modified content
Malicious instructions alter the LLM's output
Generates misleading results
An attacker exploits a vulnerability (CVE-2024-5184) in an LLM-powered email istant
Injects malicious prompts
Allows access to sensitive information

Scenario #4: Intentional Model Influence

Manipulates email content

An attacker uploads a resume with split malicious prompts

LLM evaluates the candidate

Combined prompts manipulate the model's response

Results in a positive recommendation despite the actual resume contents

Scenario #6: Payload Splitting

An attacker embeds a malicious prompt within an image accompanying benign text
Multimodal Al processes the image and text concurrently
Hidden prompt alters the model's behavior

Scenario #7: Multimodal Injection

Leads to unauthorized actions or disclosure of sensitive information

An attacker appends a seemingly meaningless string of characters to a prompt

Scenario #8: Adversarial Suffix .~ " Influences the LLM's output in a malicious way
. Bypasses safety measures

An attacker uses multiple languages or encodes malicious instructions (e.g., using Base64 or emojis)
Scenario #9: Multilingual/Obfuscated Attack Evades filters

V\ Manipulates the LLM's behavior

LLMO1 : Prompt neccn% Scenario #5: Code Injection

S markmap ==

Why Existing Tools

leave you

vulnerable?

(@ rnsoremrm)
e System Health

e CPU

e Logs

(@ rraasecwini)

e Signature based

e Known Attacks

e Novel Al Attacks

Question

Your WAF blocks known SQL injection strings. Your APl logs show 200 OK
responses.

How do you detect a subtle indirect prompt injection attack embedded
within retrieved RAG documents that successfully exfiltrates user data
via a seemingly benign LLM response, using only traditional Olly signals
(metrics, basic logs, traces)?

Solutions

e Log Full Context: Record identifiers (e.g.,, doc IDs) for data retrieved by RAG, full
LLM prompts, and responses.
Why: Helps analyze the context behind problematic outputs.

e Contextual Tracing: Link user queries, retrieved docs, LLM invocations, and
responses in traces.
Why: Pinpoints malicious documents causing bad outputs.

e Monitor Responses: Scan LLM outputs for sensitive data patterns (PIl, secrets)
using DLP tools.
Why: Detects attacks and data exfiltration directly.

e Analyze Semantics: Use heuristic rules or ML models to detect suspicious prompts
or anomalies in embeddings.
Why: Flags unusual inputs or outputs for investigation.

SecObs Layers for Indirect Injection Detection

User Request (Initiates Flow)

RAG System (Retrieves Context) O<

Input: Data Sources (incl. Malicious Doc)
SecObs: Log RAG Context Retrieved

Attack Flow & Interaction Points Pre-LLM Stage SecObs (Optional): Heuristic Check on Combined Input

LLM Processing SecObs: Log Full LLM Input (Prompt + Context) & Output (Response)
\J

~_Result: Potentially Harmful Output (Data Leak)

Output Generation o .
~—__ SecObs: Scan Output (DLP / Content Analysis)

Implied SecObs Concepts Traceability: The structure implicitly connects User -> RAG -> LLM -> Output
S

Arey kahena kya chahte ho?

Unify Security & Observability for Al

+
o1

Shared Data Plane

Security signals (threat intel,
vulnerability scans) enrich
Olly data (logs, traces,
metrics). OTly data provides
context for security alerts.

+

o2

Al-Specific Signals

Monitor prompts, responses,
embeddings, token usage,
content safety flags as
first-class citizens.

+

03

Behavioral Analysis

Move beyond signatures
to detecting anomalous
Al behavior

+

o4

Contextual Tracing

Trace requests not just through
services, but through model
calls, data retrieval, and
decision points

METRICS

Prompt/Response Tokens: Cost, perfor
Dos detection.

Embedding Drift: Statistical distance (cosine
sim) over time - indicates concept shift |
potential poisoning.

Content Safety Flags: Rate of harmful content
generated (hate speech, PIl) / Rate of refusal.

Tool Use Success/Failure Rate: For agentic
systems.

Prompt Injection Heuristic Score: Frequency of
prompts matching known attack patterns.

Evolving MELT Pillars

LOGS

Full Prompt/Response Pairs
(sanitized/Anonymized): For incident analysis,
debugging, and retraining. Crucial.

Metadata: Model ID, version, temperature,
template used, RAG sources consulted.

Content Moderation Decisions: Why was
content flagged/blocked?

TRACES

End-to-End Flow: User query -> AP| Gateway ->
Orchestrator -> Vector DB -> LLM(s) -> Output
Processing -> User.

Context Propagation: Carry metadata (user ID,
session ID, data sources) through the trace.

References

OO AW

Al Security Solution Cheat Sheet Q1-2025 - OWASP Top 10 for LLM & Generative Al
Security
Agentic Al - Threats and Mitigations - OWASP Top 10 for LLM & Generative Al Security

OWASP Top 10: LLM & Generative Al Security Risks

LLM Applications Cybersecurity and Governance Checklist v1.1 - English - OWASP Top 10
for LLM & Generative Al Security

Solutions Landscape - OWASP Top 10 for LLM & Generative Al Security
LLMRisks Archive - OWASP Top 10 for LLM & Generative Al Security

[n'd

O e

=

£8 &
.B.mun_vu
= S
D.LTS
> >
SEC-®
5w 03
Z=20<<

Thank you!

@ docker:

Hewlett Packard

Enterprise

—

