LLM Al Security
Framework

"Secure prompt? Seriously, are you sure?”

Swhoami

Shubhendu
Shubham

“sudo rm -rf / problems”

aka “Troubleshooter”

Open Source

MDC

Cloud Security

Microsoft Defender for DevSecOps
__Azure Landing Zone
Cloudstrike

e) HACKTHEBOX
Container _ i Docker Scout

Kubernetes

GHAS
SASTISCA ___— Synk

SonarQube
Qualys
DAST

Tennable

Burpsuite
Threat

Shubhendu's Skills

STRIDE
g _

L]
Subject
Matter
g PASTA
Microsoft Sentinel
= Wazuh(single Node)

NIST CSF 2.0
Zero Trust Architecture
Framework Microsoft Cloud Adoption Framework
MITRE Attack & Defend(intial Draft)
Cyber Kill Chain
Standards

OWASP Top 10

SANS Top 25
Strategies

Defence in Depth
Security in Depth

Ruby

GoLang(Learning)

KQL
YARA & Sigma
YAML

Shell Scripting(Bash) & Adv Linux

Languages/Others

CTF BADGES

Markdown
Git & GitHub
CTF

Microsoft Microsot
AAZURE SECURITY
AZURE NETWORK
ENGINEER ASSOCIATE
ASSOCIATE * ok

Community

AZ 500
AZ 700
@ fy Azure Developer

20 (vmwucmfg

@ docker: TINE

BY OFFENSIVE SECURITY

The Path to a Secure Future™

Disclaimer

You can’t protect

what you don’t know you have:

— not sure

OWASP Top 10 for LLM Applications 2025

OWASP Top 10 for LLM Application 2025

LLMO1:

Prompt Injection

LLMO2:

Sensitive Information Disclosure

LLMOS:

Supply Chain

LLMO4:

Data and Model Poisoning

LLMOS:

Improper Output Handling

LLMOG6:

Excessive Agency

LLMO7:

System Prompt Leakage

LLMOS:

Vector and Embedding Weaknesses

LLMO9:

Misinformation

LLM10:

Unbounded Consumption

LLMO1: Prompt Injection

Prompt Injection vulnerabilities exist in how models process prompts,
and how input may force the model to incorrectly pass prompt data to
other parts of the model, potentially causing them to violate guidelines,
generate harmful content, enable unauthorized access, or influence
critical decisions. While techniques like Retrieval Augmented Generation
(RAG) and fine-tuning aim to make LLM outputs more relevant and
accurate, research shows that they do not fully mitigate prompt injection
vulnerabilities.

Attack Scenarios

LLMO1

An attacker injects a prompt into a customer support chatbot

Instructs it to ignore previous guidelines
Scenario #1: Direct Injection Queries private data stores

__Sends emails _
Leads to unauthorized access and privilege escalation
A user employs an LLM to summarize a webpage with hidden instructions
Scenario #2: Indirect Injection Causes the LLM to insert an image linking to a URL
Leads to exfiltration of the private conversation
A company includes an instruction in a job description to identify Al-generated applications
Scenario #3: Unintentional Injection An applicant uses an LLM to optimize their resume
Inadvertently triggers the Al detection
An attacker modifies a document in a repository used by a RAG application
= y User's query returns the modified content
Scenario #4: Intentional Model Influence T 5
Malicious instructions alter the LLM's output
LLMO1 : Prompt Injection

Generates misleading results

An attacker exploits a vulnerability (CVE-2024-5184) in an LLM-powered email assistant
Injects malicious prompts

Scenario #5: Code Injection

Leads to unauthorized actions or disclosure of sensitive information

An attacker appends a seemingly meaningless string of characters to a prompt

Scenario #8: Adversarial Suffix .~ " Influences the LLM's output in a malicious way

. Bypasses safety measures.

An attacker uses multiple languages or encodes malicious instructions (e.g., using Base64 or emojis)

Allows access to sensitive information
Manipulates email content
An attacker uploads a resume with split malicious prompts
LLM evaluates the candidate
Scenario #6: Payload Splitting = -
Combined prompts manipulate the model's response
Results in a positive recommendation despite the actual resume contents
An attacker embeds a malicious prompt within an image accompanying benign text
. . - Multimodal Al processes the image and text concurrently
Scenario #7: Multimodal Injection . =
Hidden prompt alters the model's behavior

Scenario #9: Multilingual/Obfuscated Attack Evades filters
Manipulates the LLM's behavior

LLMO3: Supply Chain

Attacker exploits a vulnerable Python library

Compromises an LLM app
Example: Open Al data breach
Scenario #1: Vulnerable Python Library Attacks on PyPi package registry
Compromised PyTorch dependency with malware
\ Shadow Ray attack on Ray Al framework

. Five vulnerabilities exploited in the wild

n . y Direct tampering and publishing a model to spread misinformation
Scenario #2: Direct Tampering ; - 5
O< Example: PoisonGPT bypassing Hugging Face safety features

Attacker finetunes a popular open access model

Removes key safety features

Scenario #3: Finetuning Popular Model Performs high in a specific domain (insurance)
Deployed on Hugging Face
Exploits trust on benchmark assurances

Deploys pre-trained models from a widely used repository without thorough verification

X . Compromised model introduces malicious code
Scenario #4: Pre-Trained Models - : -
Causes biased outputs in certain contexts
Leads to harmful or manipulated outcomes

Compromised third-party supplier provides a vulnerable LoRA adapter

Scenario #5: Compromised Third-Party Suppliero<

Merged to an LLM using model merge on Hugging Face

Attacker infiltrates a third-party supplier

~ Compromises the production of a LoRA adapter

LLMO3: Supply Chain Intended for integration with an on-device LLM

Scenario #6: Supplier Infiltration

Compromised LoRA adapter includes hidden vulnerabilities and malicious code

Provides a covert entry point into the system

Malicious code activates during model operations

Target cloud infrastructures

Agentic Al - Threats

Single Agent Architecture

Application

y
Output m

Input
—m— 1 (NL, Media) e (NL, Media)
P
@(} @ 5 5 | Planning | augmented
~/ : model
Content Data Human in | Action | ExeLcutron >
the loo| 00p
P e Tools / Function Calling | _ _ _ v
Q A ' - -
3. @ (‘API"; ' LLM Model n Function
© Memory [Shori-Term | e Calling
Device Code Service T SO ISP Ul I S
A
Supporting
Services
Long-Term Vector
Memory Datastore

Threat Modeling
é%mm

Application
2 ... E EQIEELDE
v i 3
i Input Output m
1 (NL, Media) il | (L. Media) [| Agent #2 |
T10
=l
@ @ [SJ I Planning | T6 iE T4 augmented
. model
Data ; Action | Execition gl
Content Human in E -
Loop
helose < Tools / Function Calling |€— — — 1— IE
@ ((; = LLM Model wFunctipn
T4 Memory | W Calling
Dewce -Code Service 'm_l— | |
A
B o o e e— e— —
E 2 i IE I BO
g
Supporting \
Services
Long-Term Vector
Memory Datastore

file:///C:/Users/ShubhenduShubham/Downloads/agentic-ai-threat-modeling.html

-y p ! .
|> . -
" -7 .)
- (..‘- et
.‘ L
s o
l. A
e T |
-~ >
1
’
\
;af
A .

RREY KE‘HNA KaYA CHAHTE HC

.
y

Solutions

Security layer for LLMs

Protects from unauthorized access, malicious inputs, and harmful outputs

Monitors and filters interactions

Blocks suspicious or adversarial inputs

LLM Firewall : s
Enforces predefined rules and policies

Ensures responses within ethical and functional boundaries

Prevents data exfiltration

Safeguards sensitive information

Specialized tools for LLM security assessment

Detects security weaknesses unique to LLMs
LLM Automated Benchmarking Identifies issues like prompt injection attacks, data leakage, adversarial inputs, and model biases

Evaluates model responses and behaviors

Flags vulnerabilities overlooked by traditional security tools

Protective mechanisms for LLMs

LLM Security Solutions

Ensures operation within ethical, legal, and functional boundaries

LLM Guardrails Prevents harmful, biased, or inappropriate content

Enforces rules, constraints, and contextual guidelines

Includes content filtering, ethical guidelines, adversarial input detection, and user intent validation

Platform approach to security posture management for Al
Focuses on specific security needs of advanced Al systems

Al Security Posture Management (Al-SPM) Covers the entire Al lifecycle from training to deployment
Ensures models are resilient, trustworthy, and compliant with industry standards
Provides monitoring and addresses vulnerabilities like data poisoning, model drift, advers

) . Emerging security solutions for Agentic Al architectures and application patterns
Agentic Al App Security , - - — -
O< Ongoing research to track and address unique security priorities for Agentic apps

References

OO AW

Al Security Solution Cheat Sheet Q1-2025 - OWASP Top 10 for LLM & Generative Al
Security
Agentic Al - Threats and Mitigations - OWASP Top 10 for LLM & Generative Al Security

OWASP Top 10: LLM & Generative Al Security Risks

LLM Applications Cybersecurity and Governance Checklist v1.1 - English - OWASP Top 10
for LLM & Generative Al Security

Solutions Landscape - OWASP Top 10 for LLM & Generative Al Security
LLMRisks Archive - OWASP Top 10 for LLM & Generative Al Security

https://genai.owasp.org/resource/ai-security-solution-cheat-sheet-q1-2025/
https://genai.owasp.org/resource/ai-security-solution-cheat-sheet-q1-2025/
https://genai.owasp.org/resource/agentic-ai-threats-and-mitigations/
https://genai.owasp.org/
https://genai.owasp.org/resource/llm-applications-cybersecurity-and-governance-checklist-english/
https://genai.owasp.org/resource/llm-applications-cybersecurity-and-governance-checklist-english/
https://genai.owasp.org/ai-security-solutions-landscape/
https://genai.owasp.org/llm-top-10/

What's Next ?

Phishing QR ,It's
my LinkedIn Don’t
Trust Always
verify

Thank you!

$9%

A S["]O\/\/ﬂ(]ke' W |ocalstack "' docker. = microsot | Reactor

